<div dir="ltr"><div dir="ltr"><div dir="ltr">On Wed, Jun 16, 2021 at 1:15 PM Prentice Bisbal via Beowulf <<a href="mailto:beowulf@beowulf.org">beowulf@beowulf.org</a>> wrote:<br></div><div class="gmail_quote"><blockquote class="gmail_quote" style="margin:0px 0px 0px 0.8ex;border-left-width:1px;border-left-style:solid;border-left-color:rgb(204,204,204);padding-left:1ex">Did anyone else attend this webinar panel discussion with AMD hosted by <br>
HPCWire yesterday? It was titled "AMD HPC Solutions: Enabling Your <br>
Success in HPC"<br>
<br>
<a href="https://www.hpcwire.com/amd-hpc-solutions-enabling-your-success-in-hpc/" rel="noreferrer" target="_blank">https://www.hpcwire.com/amd-hpc-solutions-enabling-your-success-in-hpc/</a><br>
<br>
I attended it, and noticed there was no mention of AMD supporting <br>
AVX512, so during the question and answer portion of the program, I <br>
asked when AMD processors will support AVX512. The answer given, and I'm <br>
not making this up, is that AMD listens to their users and gives the <br>
users what they want, and right now they're not hearing any demand for <br>
AVX512.<br>
<br>
Personally, I call BS on that one. I can't imagine anyone in the HPC <br>
community saying "we'd like processors that offer only 1/2 the floating <br>
point performance of Intel processors". Sure, AMD can offer more cores, <br>
but with only AVX2, you'd need twice as many cores as Intel processors, <br>
all other things being equal.<br>
<br>
Last fall I evaluated potential new cluster nodes for a large cluster <br>
purchase using the HPL benchmark. I compared a server with dual AMD EPYC <br>
7H12 processors (128) cores to a server with quad Intel Xeon 8268 <br>
processors (96 cores). I measured 5,389 GFLOPS for the Xeon 8268, and <br>
only 3,446.00 GFLOPS for the AMD 7H12. That's LINPACK score that only <br>
64% of the Xeon 8268 system, despite having 33% more cores.<br>
<br>
¬†From what I've heard, the AMD processors run much hotter than the Intel <br>
processors, too, so I imagine a FLOPS/Watt comparison would be even less <br>
favorable to AMD.<br>
<br>
An argument can be made that for calculations that lend themselves to <br>
vectorization should be done on GPUs, instead of the main processors but <br>
the last time I checked, GPU jobs are still memory is limited, and <br>
moving data in and out of GPU memory can still take time, so I can see <br>
situations where for large amounts of data using CPUs would be preferred <br>
over GPUs.<br>
<br>
Your thoughts?<br>
<br>
-- <br>
Prentice<br></blockquote><div><br></div><div>AMD has studied this quite a bit in DOE's FastForward-2 and PathForward. I think Carlos' comment is on track. Having a unit that cannot be fed data quick enough is pointless. It is application dependent. If your working set fits in cache, then the vector units work well. If not, you have to move data which stalls compute pipelines. NERSC saw only a 10% increase in performance when moving from low core count Xeon CPUs with AVX2 to Knights Landing with many cores and AVX-512 when it should have seen an order of magnitude increase. Although Knights Landing had MCDRAM (Micron's not-quite HBM), other constraints limited performance (e.g., lack of enough memory references in flight, coherence traffic).</div><div><br></div><div>Fujitsu's ARM64 chip with 512b SVE in Fugaku does much better than Xeon with AVX-512 (or Knights Landing) because of the High Bandwidth Memory (HBM) attached and I assume a larger number of memory references in flight. The downside is the lack of memory capacity (only 32 GB per node). This shows that it is possible to get more performance with a CPU with a 512b vector engine. That said, it is not clear that even this CPU design can extract the most from the memory bandwidth. If you look at the increase in memory bandwidth from Summit to Fugaku, one would expect performance on real apps to increase by that amount as well. From the presentations that I have seen, that is not always the case. For some apps, the GPU architecture, with its coherence on demand rather than with every operation, can extract more performance.</div><div><br></div><div>AMD will add 512b vectors if/when it makes sense on real apps.¬†</div></div></div></div>