<div>Well to me that's the point. My brain is too small for 500Kx500K matrices over a ring of 22 degree polynomials, too. So we throw a 16-node computer at it and crush it under the hobnailed jack-boots of Higher Mathematics.
</div>
<div>I wish I know more about the SAGE (machine) that hosts the SAGE (software) that was used for this, but apparently <a href="http://washington.edu">washington.edu</a>'s web server can't handle the CNN exposure as well as their number cruncher can crunch numbers. They are still down.
</div>
<div>Peter<br><br> </div>
<div><span class="gmail_quote">On 3/22/07, <b class="gmail_sendername">Robert G. Brown</b> <<a href="mailto:rgb@phy.duke.edu">rgb@phy.duke.edu</a>> wrote:</span>
<blockquote class="gmail_quote" style="PADDING-LEFT: 1ex; MARGIN: 0px 0px 0px 0.8ex; BORDER-LEFT: #ccc 1px solid">On Wed, 21 Mar 2007, Peter St. John wrote:<br><br>> Times have sure changed; with Wiles and Fermat's Last Theorm in newspapers
<br>> for over a year, then "A Beautiful Mind" from Hollywood; it's almost not<br>> surprising that the solution of a difficult math problem is mentioned at<br>> CNN.com.<br>><br>> The Exceptional Lie Group E8 computation just got done (some info at
<br>> <a href="http://www.aimath.org/E8/computerdetails.html">http://www.aimath.org/E8/computerdetails.html</a> about the details of the<br>> computation itself). Reference to the system SAGE is a bit ambiguous; it's
<br>> the name of a symbolic mathematics package and apparently also a 16-node<br>> system at the same University of Washington. Natually I was curious about<br>> the computer, but ironically, it seems that while they can handle a matrix
<br>> with half a million rows and colums each (and each entry is a polynomial of<br>> degree up to 22, with 7 digit coeficients), their departmental web server<br>> can't handle the load of all of CNN's readership browsing at once :-)
<br>><br>> The group E8 itself, together with some explanation of the recent news, is<br>> in wiki, <a href="http://en.wikipedia.org/wiki/E8_%28mathematics%29">http://en.wikipedia.org/wiki/E8_%28mathematics%29</a>
<br>><br>> Dr Brown might explain better than I could how sometimes the best way to<br>> understand a thing is to break it down into simple groups of symmetries.<br><br>Don't you be puttin' that off on me now.  I get off of that particular
<br>bus somewhere around the SU(N) stop, with rare excursions over into<br>point groups on the other side of the tracks.  Unitary, yes.<br>Orthogonal, why not.  SL(2,C) even.  Strictly UNexceptional.<br><br>> Apparently, one of the funky things about E8 is that the "easiest way to
<br>> understand it" is itself.<br><br>Yeah, and like I have a brain that can manage ~500,000x500,000<br>complicated polynomial objects.  Thanks, I think... but not.<br><br>   rgb<br><br>><br>> Peter<br>>
<br><br>--<br>Robert G. Brown                        <a href="http://www.phy.duke.edu/~rgb/">http://www.phy.duke.edu/~rgb/</a><br>Duke University Dept. of Physics, Box 90305<br>Durham, N.C. 27708-0305<br>Phone: 1-919-660-2567  Fax: 919-660-2525     
<a href="mailto:email:rgb@phy.duke.edu">email:rgb@phy.duke.edu</a><br><br><br></blockquote></div><br>