

Breaking New Ground The Evolution of Linux Clustering

Donald Becker February 15th, 2005

Breaking New Ground

- Evolution of Linux Clusters: Challenging Conventional Wisdom
 - Timeline of Innovation driven by upsetting the expected belief
- Fearless Forecasts for the Future
 - Conquering uncharted territory

1. Only supercomputers can do the job

- Prevailing belief that only custom designed architectures could solve complex problems
- SMP supercomputers required to meet needs of high performance computer users
- Only a small group of highly skilled programmers could write High Performance Computing (HPC) code
- Domain experts had to depend on these programmers to design the analyses and simulations

High Performance Computing was too costly for most companies

2. Open Source not a viable platform

- Only UNIX was considered sufficiently robust for HPC
 - Linux perceived as a "toy" system by many
- Commodity hardware too slow and primitive
- Proprietary hardware and software was required for peak performance
 - The OS vendor controlled the tools
- As recently as '97, Windows NT even considered the only viable alternative platform given Msft's dominance
- Attack of killer microchip anticipated

\$ Million+ price tag still a huge barrier to entry for most

Disruptive Technologies Converge

- Widespread acceptance of personal computers reduces cost of commercial, off-the-shelf (COTS) components
- Higher clock rates, cheap memory and networks
- Innovation comes first on commodity platforms
- Linux and Open Source gain acceptance
 - Rebel operating system, but capable of working with broad set of commodity hardware
 - License enables coherent development without proprietary splits

Upsetting the Expected Beliefs

- I. Use Networked PCs for HPC
 - Commodity hardware is now powerful enough
 - Overcome latency issues
 - Empower the domain experts to design the code
- 2. Use Linux for the OS
 - See potential, not a toy or enthusiast's tool
 - Recognize networking capability of Linux
 - Build on open source vs. proprietary mindset

Birth of Beowulf Project

Beowulf Democratizes Supercomputing

- Project conceived by Becker and Sterling in '93 and initiated at NASA in '94
- Objective: show that commodity clusters could solve some of the easier problems usually handled by \$million supercomputers but at a fraction of the cost
- Build a system that scaled in all dimensions
 - Networking, bandwidth, disks, main memory, processing power
- Initial prototype
 - 16 processors, Channel-bonded Ethernet, under \$50K
 - Matched performance of contemporary \$1M machine
- Idea spread quickly through NASA, research, academic communities

HPC at a fraction of traditional cost

Early Beowulf Clusters

- Unsupported
- Roll your own
- Hardware reliability issues
- Compute density required considerable floor space
- Cheap

Beowulf Pioneer Community: DIY Innovation

- Potential for a variety of applications was tremendous
- Domain expert likely to also be application architect, programmer, system administrator
- Only a subset of people had the talents, skill, and time to play all roles
- Open source meant everything was free

Mindset & practical considerations still limited who could participate

3. Roll your Own Clusters

- Sometimes the belief most in need of change is your own
 - DIY approach not perfect
- Not all domain experts had know-how, desire or time to build their own clusters, write apps, and manage system
- Commercial customers expected reliable hardware, supported apps, stability, training, and even documentation
- Financial resources were needed to advance technology further

Scyld Software founded to overcome cluster management barriers

Clusters had Inherent Scalability Problems

- While COTS hardware was cheap, the time to build your own HPC Linux cluster was not!
- Clusters required full install on each system or use of NFS (Network File System)
- Configuration assumed fixed set of machines at installation
- MPI and PVM were only interfaces for cluster programming of parallelized applications

A commercially-viable cluster solution had to be easier than this

Unified Cluster System Prototype: 2000

- Scyld UCS prototype full install only on master node, netboot and compute nodes existed only to run applications
- Designed from scratch delivers single system installation, administration, provisioning, monitoring, process space: *BeoMaster*
- Automatically, incrementally and transparently scalable, no cascading failures
 - No need to assume a fixed set of machines
- Deployment platform standardized configuration

4. Clusters are good for scientific research and technical simulations

- PCs powerful enough to do HPC analysis for commercial applications such as MCAD/E, geoscience, bioinfomatics
- Expensive supercomputers mostly reserved for government research and defense contractors
- All major hardware vendors offer Linux recognized as
 - Stable and equally robust as UNIX
 - More scalable than Windows NT
 - More economical than other operating systems
- Key ISVs developing for distributed model
- Beowulf is an accepted approach for clusters

Mainstreaming the Movement

- Engineering teams across different industries under pressure
- Need to get products to market faster on tighter budgets
- Aging workstations are common
- Want more complex simulations earlier in design process
- Facing analysis bottlenecks
- Don't have time to build their own clusters

Complicated cluster management prevents broader uptake

Linux HPC Cluster Sweet Spot

Supercomputers Linux HPC Clusters Desktops

Turning it into a science not an adventure

- Scyld's single system management makes it reasonable and cost-effective to upgrade to clusters as workstations need to be replaced
- Scyld's unique approach enables anyone who can administer a single Linux box to easily set up and manage a Scyld cluster up to 1000 nodes
- Incremental scaling is possible without redesign or administrative effort
- Combination of ease of use, power, support is ideal for commercial installations

Complete, commercially supported software platform for HPC clusters

Scyld Beowulf Overview Simplicity & Ease of Use

Scyld Features & Benefits Technology leadership Customer benefits

BeoMaster: Key libraries & extensions to Linux kernel for clustering

 Single Point of Cluster Management Single system installation Single system administration Single system monitoring 	 Install once, execute everywhere Add or remove nodes in seconds More secure model Supports diskless nodes Lower deployment, management, maintenance costs
 Unified Process Space SMP-like environment Lightweight compute nodes Automatic process migration at job execution time Manage processes w/ std Linux tools 	 Cluster invisible to end users Easier to submit & manage jobs Lower overhead for applications Users focused on designs, not clusters Shorter design cycle

Scyld Features & Benefits Technology leadership Customer benefits

Complete Software Platform for Linux Clustering Full Linux Distribution Completely standards based Linux Kernel Version 2.4 Most Red Hat applications using MPI run unchanged* Familiar Red Hat environment No need to purchase additional RH licenses Not proprietary, fully standards based

Integrated & Flexible HPC Toolset

- Bundled and pre-tested
- Parallel libraries (MPI, PVM)
- Compilers (C, C++, Fortran)
- Cluster file system (PVFS)
- Library interfaces to integrate other tools/workflows

- Complete HPC clustering solution
- Integrated & pre-tested
- Flexible platform to integrate other popular HPC toolsets
- Works out of the box
- * May require configuration or minor modifications to distribute across cluster

Clusters delivering on the promise

HITACHI Inspire the Next

Hitachi Manufacturing

- Using CFD to study airflow in its hard drives
- National Weather Service
 - Weather information dissemination system
 - Relies on intensive, behind-the-scenes computation used to issue up-to-the-minute weather updates and warnings to the public
- University of Arizona Lunar and Planetary Lab

Numerical simulations to study the formation of planet surface features & dynamics of planet atmospheres & circulation

Scyld 'supercluster' has increased compute speed fifteen fold so the Lab can handle larger problems, covering a larger region of the solar system **SCY**

Scyld Future Roadmap

The Beliefs we challenged

- 1. Only supercomputers can do the job
- 2. Open Source not a viable platform
- 3. Roll your own clusters
- 4. Clusters are good for scientific research and technical simulations

And...

5. Grid Computing is the future of distributed computing

Fearless Forecast: Clusters Here to Stay

- Commodity hardware and Linux continue to advance
- Cluster model will be applied to enterprise uses
 - Bulk data handling, data mining
 - High Performance Throughput
 - Multiple small scale parallel jobs
 - Dynamic web applications
- All sets of machines will be managed as a cluster

Clustering is the natural evolution of the computing ecosystem

Thank you!

Booth #609

www.scyld.com

www.beowulf.org

